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The Chebychev explicit method can be extended to nonsymmetric operators L whose 
complex eigenvalues lie within an ellipse in the complex plane. The vectorizability of the 
method results in high execution efficiency on a “pipeline” computer. We derive the method 
and its convergence rate, and give a comparison with two other methods. The comparison 
is taken from a 2D plasma turbulence code, in which L = V2 + A(x, y) . V. The explicit 
method is approximately three times more efficient than AD1 for the model problem solved 
on a two-pipe Texas Instruments AX. In some cases, a staggered mesh can be used to gain 
another factor of 2 in the efficiency of the explicit method. The method has been used 
successfully on meshes of 34 x 34, 50 x 50, and 130 x 130 points. For grids of 50 or 
more points on a side, we show in the Appendix that convergence can be speeded con- 
siderably by the use of a suitably chosen auxiliary coarse grid, on which long-wavelength 
components of the error are corrected. 

INTRODUCTION 

The computational mathematics literature is well stocked with numerical methods 
for solution of self-adjoint linear operator equations. See, for example, the many 
methods and references given by Varga [I], Birkhoff [2], and Vichnevetsky [3]. 
However, many fewer approaches are offered for non-self-adjoint problems. One 
occasionally encounters the suggestion that the equation L(r) $(I) = S(r) (with L the 
linear operator, and S the known driving term) be made self-adjoint by an extra 
application of the adjoint of L: LtL$ = LiS. There may be cases in which this 
approach has merit. However, it has two immediate drawbacks: (1) one has to work 
with a higher-order equation and (2) the ratio of maximum to minimum eigenvalue 
amplitude, an indicator of the amount of numerical work required, is squared. 

An approach that has gained recent attention is a combination of approximate 
factorization and the conjugate gradient method. See Vichnevetsky [3, p. 601, or 
Meijerink and van der Vorst [4]. With some adaption, this approach may hold promise 
for non-self-adjoint problems. But the factorization stage is awkward for vector 
computers. One must solve upper- and lower-triangular matrix equations, which 
resemble recursion formulas. In order to obtain a precise inverse, the computer must 
initiate and complete certain calculations one at a time, rather than doing many in 
parallel. Some work has been done lately on inverting upper- and lower-triangular 
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matrices efficiently on vector processors [5]. However, these methods construct a 
sequence of iterates by vectorizable algorithms, and thus introduce an extra level of 
approximation and conceptual complexity into the problem. Thus, we wish to offer an 
alternative method which allows complete vectorization (parallel processing) for all 
interior mesh points of a multidimensional grid. In addition to its vectorizability, the 
Chebychev method guarantees convergence at a rate which is an analytic function of 
eigenvalue parameters. And unlike the popular alternating direction implicit (ADI) 
method, its convergence rate holds regardless of whether the operator can be split into 
one-dimensional operators which commute with each other. 

The work to be described here parallels that of Manteuffel [6], who has demonstra- 
ted in greater detail some of the properties of the Chebychev polynomials in the 
complex plane. Whereas Manteuffel offers an iterative method for locating eigenvalues 
in the complex plane, we are concerned with specifics of the method when the eigen- 
values can be estimated in advance. In particular, we give iteration formulas and 
convergence rates in terms of eigenvalue parameters. We give asymptotic forms for the 
convergence rate, and give a two-parameter optimization of the convergence rate. We 
then apply the method to a non-self-adjoint equation encountered in plasma physics 
and fluid dynamics. For this application we give the eigenvalue parameters essential 
to the method. We show that these parameters in some cases allow a “hopscotch” or 
odd-even mesh iteration which would double the efficiency of the method. However, 
we do not take advantage of this extra factor of two in the results presented here. 

ASSUMPTIONS 

We seek an iterative solution to the equation 

Ll$=S, (1) 

where S is a known source vector and L is a matrix or finite-difference operator. We 
assume L has complex eigenvalues h, $- i& , with all X, being of the same sign. We 
also assume all X fall within an ellipse in the complex plane (see Fig. 1) whose major 
or minor axis coincides with the real axis. The intersections of the ellipse with the real 
axis are b - a and b + a, with 

lb/ >a>O. (2) 

The limits of the ellipse in the imaginary direction are 

so the equation of the ellipse is 
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FIG. 1. Ellipse containing complex eigenvalues. 

The “best” values of a, b, and c are dependent on the nature of L. For some cases, 
the error convergence rate may depend strongly on these values. We shall later give a 
physically motivated example in which “best” values can be estimated straight- 
forwardly. However, if one does not have a priori estimates, values can be obtained 
numerically by systematic means given elsewhere [6]. 

We assume that (1) possesses an exact solution CD. At the end of n iterations, we will 
have an approximate solution @, whose error is defined to be 

E” = p - @. 

The iterative method is to be such that 

(5) 

E” = P,(L) 8, (6) 

where P, is a polynomial of degree n. Substitution of (5) into (6) gives 

p = P,(L) $0 - (P,(L) - 1) CD. (7) 

We do not know @ in advance, but we do know L”@ = Lk-lS for k > 0. Thus from 
(7) we must require that the zero-degree term of P,(L) be 1: 

P,(O) = 1. (8) 

We wish to choose P, such that its magnitude is as small as possible everywhere 
within the ellipse containing eigenvalues of L. 
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DETERMINATION OF P, FOR A REAL MIN-MAX PROBLEM 

The problem of minimizing the maximum value of j P,(x)] subject to P,(O) = 1 has 
a well-known solution when x is restricted to real values between b - a and b + a 
with b/a > 1. The standard argument [6] points out that the desired P, is such that 
all maxima of 1 P, j have the same value. One immediately determines that P, is 
proportional to a Chebychev polynomial. The Chebychev polynomials T,, are such 
that 

and 
T, (cos LX) = cos na: 

T, (cash a) = cash nol. 
(9) 

That cos niu is a polynomial in cos cx results from the elementary identity 

cos(m t- 1) (Y = 2 cos 01 cos ma - cos(m - 1) a. (10) 

Equation (10) is also valid when cash is substituted for cos. Thus if cos ma and cos 
(m - 1) a: are polynomials in cos a, then so is cos(m + 1) (Y. This is the case for 
m = 0 and 1, so it is also true for all m > 0. Equation (I 0) also gives the recursion 
formula for the Chebychev polynomials: 

T,+,(X) = 2x7.,4.4 - T,-I(X), (114 

with 

and 

T,(x) = 1 (lib) 

T,(x) = x. (llc) 

Note that T,(x) is an even or odd function of x, as il is even or odd. From (9) we can 
see that / T,(x)1 reaches a limiting value of 1, n + 1 times as x varies from - 1 to 1. 
Thus the solution to the min-max problem for real x is 

P,(x) = T, (-- x ; b )/L (- $) (12) 

and 

~ P, inmx = 1 Tn (- $)I-’ 

~ cash n(co:h-‘(hia)) < ” 

(13) 
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DETERMINATION OF P, FOR A COMPLEX MIN-MAX PROBLEM 

The Chebychev polynomials also possess optimal properties in the complex plane. 
With 

2 = 5 + i7j, (14) 

we seek a polynomial P,(z) of degree n such that P,(O) = 1 and such that the maxi- 
mum 1 P,(z)\ will be as small as possible within the ellipse 

(&Lj’+$1. 

For c/a < 1, the unique solution to this min-max problem is [6] 

pm = Tn ( (a2z:c:)l,2 j/T= ( (a2 Ibc2)1,2 j 

(15) 

(16) 

We shall demonstrate that for a given c/a less than or greater than unity, every 
maximum of 1 P, 1 in the ellipse (15) has the same value, and that this maximum is 
less than unity. 

For c/a < 1, we first point out that all n roots of P, are pure real. As a result, 
1 P,(z)] increases monotonically away from the real axis; i.e., there are no local 
maxima. (The proof is elementary.) This means we need examine only the boundary 
of the ellipse (15) for maxima. 

Express the argument of T, in the numerator of (16) as 

z’ = (z - b)/(a2 - cy 
= cos 01 cash t3 + i sin 01 sinh j3 
= cos(Lu. - i/3), (17) 

where 01 and /3 are real. Proof that an arbitrary complex number can be expressed in 
this form with real 01 and /3 is straightforward and will be omitted. Comparing (14) and 
(17) and eliminating 01 one can show that surfaces of constant /3 are ellipses in the 
complex plane: 

i t--b - 1 2+ i rl 2 cash 
/3(a2 c2)li2 

sinh 
jl(a2 

z: 1. - 
2)1/Z 

1 

This ellipse is identical to (15) when 

tanh /3 = c/a, (19) 

so that 

cash p = (1 - c2/a2)-1/2. 

Note from (17) that z’ scans once around the ellipse as (Y varies from 0 to 277. 

(20) 
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From (17) we find 

so that 

T%(L) = cos (na - in /?) 

= cos PZCZ cash n/3 + i sin HN sinh n/3, (21) 

/ Tn(z’)12 = cosh2 n/3 - sin2 nol. (22) 

This shows that on an ellipse of constant /3, / m(z’)I reaches the same maximum value, 
namely, cash n/3, 2n + 1 times as 01 varies from 0 to 27~. The maximum 1 P,(z)1 can 
now be obtained from (16): 

cash n cash-l (1 - ~~/a~)-‘/~ 
I P&hnax = - cash n cash-’ (1 b l/a)(l - c~/Lz~)-~/~ 

< 1. (23) 

We have used the even or odd symmetry of T, to remove the minus sign from the 
argument in the denominator of (16). The inequality in (23) results from 1 b //a > 1 
and the monotonicity of the functions cash and cash-l 

For c/a > 1, (16) becomes 

(24) 

All n roots of P, are now on a line parallel to the imaginary axis, and there are still 
no local maxima in 1 P,(z)I. Again, we need examine only the perimeter of the ellipse 
for maxima. Express the argument in the numerator of (24) as 

z’ = -j(z - b)/($ - 4L’2 

= cos cy. cash /3 $ i sin a: sinh /3 
= cos(cY - zp) 

Comparing (14) and (25) and eliminating 01 we find 

i 
?1 

cash /3(c2 - a2)1/2 1 t 2+ t--b 2’1 
sinh /3(c2 - u2)l12 1 ’ 

This is identical to (I 5) when 

or 

tanh ,9 = a/c (27) 

cash p = (1 - a2/c2)-1/2 (28) 

(25) 

(26) 
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Using (25), we find 

j Tn(z’)12 = cosh2 ~$3 - sin2 IZLY. (29) 

This gives cash n/3 as the maximum amplitude of the numerator in (24). We can 
evaluate the denominator in (24) by setting z = 0, a = 7r/2, and sinh ,f3 = b/(c2 - u2)1/2 
in (25). For even II, (29) gives the amplitude of the denominator as cash n sinh-l 
b/(c2 - a2)lj2, while for odd IE the result is sinh II sinh-l b/(c2 - u2)l’*. For this reason 
we must restrict n to even values to guarantee convergence when c/a > 1. For even n, 
(24) gives 

I P,mm = 
cash n cash-l (1 - a2/c2)-1/2 
cash n sinh-l b/(c2 - a2)lj2 

cash n cash-l (1 - u~/c~)-~/~ 
= cash n cash-l (I + (6” - a2)/c2)1/2 (1 - aa/c2)-1/z 

< 1. (30) 

To illustrate the necessity of taking n even, let us consider an example in which 
b/c = 0.9 and a/c = 0.899. For n = 16, (30) gives / P jmax = 0.984. However, with 
n = 17, we must change the cash function in the denominator of (30) to sinh, and we 
have / P, jmax = 1.003. 

CONSTRUCTION OF THE ITERATIVE METHOD 

We shall take the polynomial of (16) to be the proper choice for use in constructing 
the approximate solution to (1) according to (7). We must choose between two 
approaches for generating the polynomial P,(L). The first is factorization of P, into 
n linear factors. We have tried this approach and found it subject to roundoff error 
amplification. The reason for this is that the process is equivalent to n overrelaxation 
steps, some of which reduce the long-wavelength errors at the expense of increasing 
the short-wavelength errors. The short-wavelength errors are eventually brought back 
down, but any roundoff error introduced while they were large tends to contaminate 
the final result. 

The second and more preferable approach to constructing P,(L) is through the use 
of recursion formulae. The only real drawback to this method is that one extra array 
of storage is required for retention of earlier iterates. We substitute (16) into (7) to 
obtain 

+n+l = Tn+,W - b)W - ~‘9~‘~) 
T,+,(-b/@2 - c2)1/2) (4” - @) + @’ (31) 

In the numerator of this expression let us express Tntl in terms of T, and 
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Tnbl according to the recursion formula (1 l), and then express T, and T,-, in terms of 
+ and 46n-l according to (31). Then we find 

p+1 = Tn+,(q:;;pl c2)l,2((L - b) 9" - 9 - 2% f-l, (32) 
n+1 

where 

q = --b/(d - dy. (33) 

Notice that the coefficient of Q, is zero. Recall that we imposed this condition at the 
outset in (8). 

In order to use this method we must know the first two terms in the recursion. We 
get these by direct construction of P,(L), and obtain 

4” = arbitrary trail solution, 

p = $0 - l/b(L#O - S). 
(34) 

RESTRICTION TO REAL ARITHMETIC 

In case c > a, then q in (33) becomes imaginary. We can avoid complex arithmetic 
in calculating T,, in (29) by use of the Chebychev polynomials of imaginary argument: 

T&x) = Pi&). 

Substitution of (35) into (11) gives the recursion formula 

T,+dX) = 2x7,(.4 -k Tm-l(X), 

where 

To(X) = 1 

and 

71(x) = x. 

When c > a, replace (32) with 

p+1= 2T7aW) 

Tncl(q’) (c” - ay2 (G - b) 4” - s> + * 4” 

where q’ = b/(c2 - a2)lj2. What happens in case c = a? In the limit c 
tend to infinity and both (32) and (37) give 

(35) 

W-4 

(36b) 

(36~) 

2 (37) 

a, q and q’ 
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ERROR ESTIMATES 

If B is an eigenvector of L such that 

LB = hB, (39) 

where X is a complex constant, then 

P,(L) B = P,(A) B. 

Let us imagine that the error co of (5) is expressed as a linear combination of the 
eigenvectors of L. We have assumed all eigenvalues of L to lie within an ellipse (15) 
in the complex plane. Then from (6) and (23) or (30), the coefficients of the eigenvector 
expansion of P have each been decreased in amplitude by at least a factor 

j P,(A)/ = &(a, b, c) = I T,(a/(a” - c”)1’2)/Tn(b/(a” - c2)li2)l . (41) 

In Fig. 2 we plot this error limit as a function of it for various values of the ratio of 
maximum to minimum real eigenvalue, 

(42) 

and ellipse axis ratio c/a. One notices that the error limit decreases approximately 
exponentially with n. In practice, when R is greater than about 103, we use a coarse 
mesh-fine mesh combination [7] to bring down the residual error. The slow conver- 
gence at large R is due to the fact that one is attempting to reduce the error by a 
diffusion process, which is slow for long wavelengths. 
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FJG. 2. Error estimate E, versus n as given by (41) for various ellipse parameters (a, 6, c). The 
curves are labeled with log,& as defined in (42). 
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Let us derive an approximate expression for (41) in the limit of large R. The results 
to be given here are valid for arbitrary c/a # 1. It is convenient to define 

and 

a= :bJ/a- 1 

= 2/(R - l), 

p = c/a. 

From (9) and the identity, 

cash-1 x = log(x + (x2 - l)‘/“), 

(43) 

(44) 

we have from (23) or (30), as appropriate, 

E, zz= cosh(n log QJ 
cd-+ log PI + n log Q,, 

I 
(45) 

cosh(n log Q& + tanh(n log QJ sinh(n log Qz) 

where 

(46) 

Since Q1 and Q2 are both greater than 1, (45) yields 

2 exp(--n log Q2) > E, > exp(--n log Q2). (47) 

Thus the estimate 

2’/2 ( 1 + 6 + (26 + 82 $- py 
1 
--)I 

E n- ISP (48) 

is always correct within a factor of 2r12. Defining the convergence rate to be 

c :.d - !cp ) (49) 

we can find simple expressions for C in the limit 6 < 1. For p < 6, C FZ (26)lfe. When 
p > 8, then C = 6/p. This shows that convergence slows down when the eigenvalues 
of the operator L have significant imaginary parts. 
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APPLICATION TO A MODEL PROBLEM 

As a test of the method (32) and the error estimate (41) we shall solve numerically 
the two-dimensional diffusion-advection equation 

Vz$ + 4x, Y> . V+ = S(x, Y) (50) 

on a rectangular grid with constant mesh spacing subject to doubly periodic boundary 
conditions. The analysis to follow will be such that other boundary conditions may be 
treated by changing the value of a single parameter u (to be defined in (72)). Equations 
of this form arise in plasma physics when charge neutrality is imposed upon a plasma 
with a nonisotropic electrical conductivity, with 4 being the electrostatic potential. 
For an application to the earth’s ionosphere, see McDonald et al. [I?, 91. 

The mesh is assumed to be K, x K, interior mesh points. We choose the x direction 
so that 

Kz > K, . (51) 

We also assume the mesh intervals to be 

6x = Sy = const. (52) 

We use redundant guard cells around the perimeter of the mesh for efficient handling 
of the boundary conditions. This results in a complete mesh of (Kz + 2) x (K, + 2) 
points. We use a second-order five-point representation of the derivatives in (50): 

Here I and J are the x and y mesh point indices, and AX and A Y are the x and y 
components of A, respectively. 

In order to estimate the eigenvalues of L it is necessary to consider A locally 
constant. Then the eigenfunctions are complex exponentials, 

& = exp (2+ (+$ + $+)I , 

where 

k, = 0, 1, 2 ,..., K, - 1, etc. for k, . (55) 

The eigenvalues are 
2 

= 6x2 ( cm +& K, + cos K, 2?rk, - 2) 

+ i (g sin 2 + g sin 2) . 
(56) 
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CONSTRUCTION OF THE ELLIPSE 

Any set of eigenvalues of bounded modulus can be enclosed in a sufficiently large 
ellipse. However, for the Chebychev iteration to have a positive convergence rate, the 
ellipse must exclude the origin. In the analysis to follow we are motivated by the need 
to produce an algorithm for solving the variable coefficient equation (50) at each time 
step in a plasma physics code [8,9]. The coefficients change in time, so it does not 
seem appropriate to spend a great deal of effort in calculating precise iteration para- 
meters for a particular A(x, u). Rather we will assume that an appropriate global 
measure of 1 A 1 is available, and from this construct parameters optimized for the 
most unfavorable orientation of A. The resulting convergence rate is positive, but its 
proximity to the maximum convergence rate for specific distributions A(x, y) has not 
been investigated in a systematic way. 

In order to find the tightest ellipse containing the complex eigenvalues for arbitrary 
orientation of A, let us adopt the following abbreviated notation: 

a, = AX 6x, 

a, = AY8y, 

CT’ = c, + c, , 

7’ = a,s, + ays, . (57) 

From (56), h, = 2/1%?(~ - 2) + i/6x2r)‘. To find the envelope of these eigenvalues 
we need only maximize [ 7’ j for fixed [‘. The orientation of (a,, a,) must be allowed 
to be arbitrary (we are solving a variable coefficient equation and must allow for the 
“worst case”). Maximizing on the orientation of (a,, a,) and on c, , we find the 
envelope 

A, = 2/6x2([’ - 2) * i/&x2ij(2 - @3/2, (58) 

where 

ii = (az2 + ayz)l’z. (59) 

This is an ellipse with parameters (a, b, c) = (4, -4, Zi21/2)/Sx2. It is the tightest 
ellipse containing all the eigenvalues for arbitrary K, , K, , a,, and au subject to 
fixed Z. Unfortunately, it passes through the origin and thus results in a zero con- 
vergence rate. By modifying the ellipse as follows, we can obtain a positive convergence 
rate. 
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MAXIMIZING THE CONVERGENCE RATE 

We must exclude from the ellipse the “mean value” component (k, , k,) = (0, 0), 
which has no effect upon (50). Let us then construct a family of ellipses passing through 

h,, i ih,, = eigenvalue pair with real part nearest zero. (60) 

Maximizing the convergence rate with respect to the two remaining free-ellipse 
parameters amounts to maximizing Q, in (46). A significant simplification results if 
we approximate (46) as follows for 6 < 1: 

Q, w 1 + (26 + pz)1/2 - p. (‘31) 

Equation (61) is valid to lowest order if 6 for all p >, 0. The family of ellipses passing 
through (60) has 

and 

so that 

0 = ((&w - bj2 + (&i/p)2)1’2 

6 = ((1 - h,,/b)” + &/pb)2)-112 - 1 

6 m h,,/b - :(X,,i/pb)2. 

(62) 

(63) 

(64) 

The assumption 6 < 1 requires both terms on the righI-hand side of (64) to be small. 
Maximizing (61) with respect to p then gives 

where 
83 + /.2(38 - 4) = 0, (65) 

(66) 

Equation (65) has only one real root, since its 0 - derivative is never zero for real 6. 
This root is 

8 = (p/4)lj3 {[(16/G + 1)lj2 + 1]113 - [(16p2 + l)liz - 1]lj3}. (68) 

Asp increases from zero, 0 increases monotonically from zero to its limiting value of Q. 
This is shown in Fig. 3. 

Maximizing (61) with respect to b is equivalent to maximizing (63). The result, 
invoking (66), is 

b - hd(l - 46) 5 3&w - max - (69) 
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However this value is unacceptably small since many eigenvalues of high mode 
numbers would fall outside the ellipse. Thus we take the smallest allowable value for b: 

b = -4/6x2. (70) 

This choice excludes from the ellipse the “odd-even” mode (k, , k,) = (Z&/2, &/2). 
This choice allows an effective doubling of the computational efficiency (to be demon- 
strated below) at the expense of having to perform a single follow-up iteration to 
eliminate the “odd-even” mode: 

+ -j f#l + &Sx2(Lr$ - S). (71) 

From (53) and (70), the midpoint of the ellipse, b, is just equal to the center coeffi- 
cient of the finite-difference operator L in (53). The recursion formulas for the iterative 
solution, (32) or (37) as appropriate, involve the operator L - b, whose central 
coefficient is zero. This results in a natural separation of the finite-difference solution 
into odd and even components, separated according to whether the sum of the indices 
Z + J is odd or even. In fact this odd-even separation extends to an arbitrary number 
of spatial dimensions. This separation would allow one to define 45” for even (odd) n 
only on even (odd) gridpoints. One could then refine the solution in a “hopscotch” 
fashion, updating only half the points at a given iteration. 

We have not taken advantage of this even-odd grid separation in any of the results 
presented here. An interested user should keep in mind two caveats: if the eigenvalue 
ellipse is prolate (c/a > I), convergence is not guaranteed for odd-numbered iterates 
(see (30)); and to overcome the inherent fetch-speed limitation of a pipeline computer, 

FIG. 3. Optimal tuning parameter as determined from (68). 
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one must separate even and odd grid point quantities into contiguously stored arrays. 
It remains to give expressions for X,, and hOi for the model problem. Defining 

u = (s,2 + s,2)+& (72) 

NY 2n/Kz (for periodic boundaries), 

(58) gives, for u < 1, 

h or m -u2/6x2, (73) 
h,i = iia/6x2. 

In (72), “min” refers to a minimum over all wavenumbers excluding the (0,O) mode. 
Ellipse parameters a and b are now specified by (62) and (70). We obtain c from (66) 
and (43): 

c = ah,i/(40bh,,)1~2. (74) 

CONVERGENCE RATES 

Taking into consideration (46), (48), (49), and (69), we have the approximate 
convergence rate 

c R5 (26 + py - p. (75) 

We can use (67), (68), and (73) to express (75) in terms of p. The result is 

where 

c ?a 2-l’“UC”(p), (76) 

C,(jL) = 2’/“[(9 - e + pyey2 - pe1q. (77) 

Recall that u = 27r/Kz for doubly periodic boundaries. The dependence of C, upon ~1 
is shown in Fig. 4. Also plotted in Fig. 4 (dashed line) is the approximation 

C,(p) e (9.5p + 1)-l. (78) 

Using (71), we find the following limiting forms for C: 

C R+ (~2-l/~(l - 3&“/2)l13), P<l 
C w ,@j-313 

(79) 
> p k 1. 

This shows that as TV increases from 0 to 1, the convergence rate drops by approxi- 
mately a factor of 10. 
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01 
0 

FIG. 4. Normalized convergence rate (77) (solid); approximation (78) (dashed). 

REMOVAL OF LONG-WAVELENGTH ERROR ON COARSE GRID 

We can see from (72) and (76) that the number of iterations required to reach a 
certain level of error reduction is proportional to K, . Thus the total number of opera- 
tions required is proportional to Kz2K, . Therefore, it is advantageous to correct the 
long-wavelength components of the solution on a coarse mesh and interpolate onto a 
fine mesh before completing the solution. The importance of regridding as a means of 
accelerating convergence of explicit relaxation schemes has been recognized for some 
time (see Brandt [7] and references contained therein). The interpolation between 
coarse and fine meshes introduces truncation error into the solution, so that the error 
estimates derived earlier may not hold on the fine mesh. For this reason, it is best to 
alternate between fine and coarse meshes more than once, attempting only a modest 
error reduction with each pass. The procedure to be described below was developed 
through practical experience in simulating physical systems. Some of the details of this 
procedure can be justified by a simple model given in the Appendix. Jn practice, use of 
a coarse grid becomes important for K, > 50. For a grid of 128 x I28 interior 
points, a coarse grid of 32 x 32 interior points is used. First, the residual L+O - S is 
extracted on the fine grid. Then this residual and A are defined on the coarse grid 
using block averages of 16 fine grid points per coarse grid point. A course grid 
correction is initialized to zero and a large number of iterations are performed. 
Typically we use three times as many iterations on the coarse grid as on the fine grid. 
Then the potential correction is defined on the fine grid using bilinear interpolation, 
and the result is subtracted from $O. Then iterations are performed on the fine grid, 
making no attempt to make significant improvements in the lowest 5 to 10 modes of 
the solution. That is, we arbitrarily increase CJ in (72) by a factor of 5 to 10. This 
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results in improved convergence of the higher modes. The effectiveness of this fine 
grid-coarse grid approach may be improved significantly in a time dependent problem 
by two-level extrapolation for the trial solution 4”. 

NUMERICAL RESULTS 

As a test of the iterative procedure (32) and the convergence estimate (76) we have 
solved (50) on meshes of 32 x 32 and 48 x 48 interior grid points without regriding; 
and on a 128 x 128 mesh with a reduced mesh of 32 x 32 interior points. All tests 
used doubly periodic boundary conditions. The numerical convergence rate com- 
parisons were carried out as follows. Arbitrary forms were adopted for A and a 
reference solution 0. Then a source term was generated from @ numerically using the 
difference operator (53). This source term was used in the iteration (32) with the 
approximate solution being initialized to zero. After a large number N of iterations 
(usually N = 40), a relative error E was defined to be the root mean square residual of 
(50) divided by the root mean square of the source, S. The average convergence rate 
was then taken to be -log E/N. 

In all cases convergence was fast enough to be consistent with (76), and in most 
cases was faster than (76). The one case in which convergence was just equal to (76) 
for all p was for QIJ = sin(2rI)/K, , and A, = const, A, = 0. 

Figure 5 shows convergence rates per second of computer time, -log E/t, obtained 

FIG. 5. Convergence rates per second of computer time, - 3 log E/at, for Chebychev explicit 
(CE) and alternating direction implicit (ADT) methods on a two-pipe AX. 
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using a two-pipe Texas Instruments AX to solve the same set of problems with the 
Chebychev explicit method (CE) (upper curve) and with an alternating direction 
implicit method (ADI) (lower curve). These comparisons were made on a 50 x 50 
mesh using data from the EJET plasma turbulence code [8, 91. The vector A was 
computed from a turbulent plasma density distribution IZ,(.Y, y) having a spectral 
power index of approximately -3.5: 

(80) 

The proportionality constant f was adjusted to give a desired value of p (see (67)) 
from 0 to 1. Figure 5 summarizes 11 separate tests with A generated from the same n, , 
but scaled to give 11 equally spaced TV values. For these tests @ was the electrostatic 
potential appropriate to n, [8,9]. 

The ADI solution used logarithmically spaced iteration parameters [1] and a 
partially vectorized tridiagonal solver. Although ADI converged faster than CE per 
iteration, the limited vectorizability of the method resulted in slow execution. Thus 
the result in Fig. 5 is machine dependent. The execution times per iteration were 
25.8 ms for AD1 and 1.32 ms for the Chebychev explicit method. To illustrate the 
computational efficiency of the explicit method, the lower limit on execution time per 
iteration (neglecting overhead and boundary value resetting) would be (48 x 48 
interior points) x (11 operations per point) x (40 ns per operation) = 1 .Ol ms. Thus 
the explicit method runs at 76 “/, efficiency on a modest 50 x 50 mesh. AD1 could be 
made more competitive by the use of cyclic reduction rather than tridiagonal solution 
in the integration direction, but it is unlikely that any improvement would bring the 
convergence rate per second up to that of the explicit metho@. In addition the bound- 
ary conditions are much easier to change in the explicit method than in the implicit 
one. Recall, too, that when the eigenvalue ellipse is oblate, one can use “hopscotch” 
updating and achieve in principle a doubling of the explicit method’s efficiency. 

Another comparison was made using a recently proposed method employing the 
conjugate gradient (CG) algorithm [lo]. This particular CG method requires inversion 
of the self-adjoint part of L (i.e., (f. + Lr)/2) once per iteration. For this problem an 
optimized complex fast Fourier transform (FFT) is used to invert the Laplacian 
operator. The results of the comparison are not shown in Fig. 5, but are comparable 
to the ADI results for p 3 0. I. For p -= 0 the method is direct and thus superior to 
the others. However for TV > IO-* the convergence of CG is no greater than that of 
CE. Use of a fully optimized real transform would increase the overall speed of CC 
by approximately a factor of 2, leading to results intermediate to the two curves of 
Fig. 5. However this particular CG method is not as generally applicable as ADI or 
CE in that it may become unwieldy when the self-adjoint portion of L contains varying 
coefficients. 
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APPENDIX: A MODEL FOR OPTIMAL REGRIDDWG 

We shall derive properties of the “best” coarse mesh for use in refining long wave- 
length components of the solution. Let us consider a test problem requiring the 
solution of Poisson’s equation subject to doubly periodic boundaries on a square 
domain of N by N interior points: 

v%j = S(x, 2’). (Al) 

The model to be developed can be made more elaborate to encompass more general 
problems such as (50), and to include startup and fetch increment penalties inherent 
in vector processors. However, the results from the more elaborate model are qualita- 
tively the same as those from the simple model below. 

Given an initial trial solution, our goal is to reduce the residual error by a factor 
of E in two stages. First, we enlarge the grid spacing by a factor m in each direction, 
so that the coarse mesh consists of N/m x N/m points. On this mesh we reduce the 
residual by a factor 42. Second we interpolate corrections to the solution from the 
coarse mesh back onto the fine mesh The interpolation process introduces an error 
of magnitude 42 or less into some number of n of the lowest modes of the system 
Thus the errors in modes 1 through n have been reduced by at least E. Errors in modes 
higher than mode n have been decreased somewhat, but not necessarily by a factor E. 
So next we relax the errors in modes higher than n on the fine mesh. This is done by 
increasing u in (72) by a factor n. 

The regridding is now defined by three variables E, m, and n. These are respectively 
the overall error reduction factor to be achieved, the ratio of coarse to fine grid 
spacing, and the number of long-wavelength modes for which truncation error 
introduced by interpolation is small enough that further error relaxation on the fine 
mesh is unnecessary. An estimate for the truncation error in a particular mode will 
allow IZ to be defined in terms of E and m. These two remaining independent variables 
will then be adjusted to give maximum overall convergence rate. 

Let D be the following second-order representation of the second derivative: 

Df(xd = (h+l - 2f +h-,Mx2. (A9 

Suppose 6x is increased by a factor m. Then for the basic function tlikx we have 

Dlneikx = 2 (cos mk 6x - 1)/m” 6x2 eitZ 
(A3) 

_ (_,p + &pn22 ax2 - . . .) eiks, 

where the subscript m denotes the increase in the mesh interval and k an arbitrary 
wavenumber. To lowest order in k&x, the fractional truncation error in (A3) is of 
magnitude &(mkSx)2. To find the mode for which the truncation error is 42, we set 
k = n 27rfNax and find 

n = & (6+j2. G44) 
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We now compute the residual error in (Al), 

R = Cz+ - S, VW 

and define block averages of R on a coarse mesh of N/m x N/m interior points. 
The asymptotic convergence rate for the Chebychev relaxation on the coarse mesh 

is 21!27rm/N, so the total number of operations required to reduce the residual by l /2 
is approximately 

T, = [ - log(#pi] 1 I (N/m)‘. w4 

After performing the required number of iterations on the coarse mesh, the 
correction is transferred to the fine mesh by bilinear interpolation and subtracted 
from the fine mesh solution. The additional truncation error introduced by bilinear 
interpolation consists mainly of high wavenumber modes. These are damped very 
effectively by the follow-up iterations on the fine mesh. Increasing u in (72) by a 
factor n gives a convergence rate 2%-n/N, so that the required fine mesh operation 
count is 

T, = [-log e/(2112rn/N)] 1 IN’. (A7) 

The total operation count is the sum of T, and T, and all operations necessary for 
regridding. The regridding can be optimized for the simple uniform mesh problem 
under consideration to require one operation per fine mesh point in obtaining block 
sums, and eight for the bilinear interpolation and correction of the solution. Thus the 
total operation count is 

T=9N”rllN’ m log E log 42 N 21/2 -~-~__ 
(641i2 i 2x rn3# 

, (A@ 

We have eliminated n from (A8) by using (A4). In deriving (AS) we have set the 
operation count per point to 11 for the Chebychev iteration. One could take advantage 
of the constancy of coefficients in the Poisson problem to reduce the operation count 
to 7. However, our purpose here is to illustrate properties of regridding for a more 
general class of problems. The number 11 is taken as a representative value for the 
Chebychev iteration applied to five-point operators. This number can take on values 
from 7 (for all constant coefficients) to 13 (for all variable coefficients). 

We now define the convergence rate per operation: 

C,, = --log E/T. (A9) 

Let us maximize (A9) with respect to m and E simultaneously. We find 

(AlO) 
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and 

0 = (A + en; log 2)/(log e)” - llm/(24~)~/‘. (All) 

Equations (AlO), (A6), and (A7) show that for the optimal regrid Tf = 3T, . Allowing 
for regridding operations, the optimal solution thus spends less than one-fourth of the 
time carrying out coarse grid iterations. Results from the numerical solution of (AIO) 
and (Al 1) are given in Table T. These results are only approximate, since we have used 
approximate expressions for convergence rates and truncation errors. Table I shows 
that the optimal coarse grid has between two and four times fewer points in each 
direction than the original mesh. For large meshes (N > 50) one can take m = 4 and 
achieve near-optimal results. For N < 50, m = 2 is near optimal. 

The optimal error reduction factor is never greatly different from $, so that one may 
have to repeat the coarse mesh-fine mesh procedure many times to achieve a substan- 
tial error reduction. Table I also shows that for large meshes, the use of a coarse grid 
for correction of long-wavelength errors may increase converge by a factor of 4 to 7. 
This may be improved by the use of a hierarchy of coarse grids. Brandt [7] claims 
convergence rates in excess of those in Table I for a multigrid solution of the Poisson 
equation. However, it has not yet been demonstrated how well the multigrid method 
treats variable coefficient equations. The constant coefficient model presented here 
and its results are descriptive of the balance between convergence and generation of 
truncation error for a general two-grid system. The results of the present model are 
similar to those of a more elaborate model tailored to Eq. (50). 

TABLE I 

Optimal Regrid Parameters M, c, n for Solution of Poisson’s Equation on N x N Mesh” 

N m E II cm lJ c,; cm c c,/cTn c c,;c, d 

___ 

16 2.073 0.352 1.785 1.02E-04 1.00 0.73 0.96 

25 2.339 0.367 2.523 3.84E-05 0.97 0.79 0.67 

32 2.500 0.374 3.054 2.23E-05 0.93 0.83 0.55 

50 2.819 0.389 4.310 8.36E-06 0.84 0.89 0.39 

100 3.397 0.410 7.350 1.82E-06 0.65 0.97 0.22 

200 4.091 0.431 12.513 3.94E-07 0.44 1.00 0.13 

a N, m, c, and n are respectively the grid size, grid reduction factor, error reductioh factor, and 
factor by which 0 in (72) is to be increased on the N x N grid. 

b C,,, is the maximum convergence rate per operation from (A9)-(All). 
c C, and C, are obtained from (A8) and (A9) with m = 2 and 4, respectively. 
d C, is the convergence rate per operation without regridding: C, = 2l/%r/l lNS. 
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